ENG

Top

Research

Korea Institute of Atmospheric Prediction Systems

Research Fields
Publication
Publication
Research

Publication

KIAPS(2020~2026)
KIAPS(2011~2019)
2024
2023
2022
2021

SCI(E)

1.

Jeong Eun Lee, Hyeon-Ju Jeon, O-Joun Lee, Hae Gyun Lim, Diagnosis of diabetes mellitus using high frequency ultrasound and convolutional neural network, Ultrasonics, vol. 136(2024).

2.

J. W. Nam, H. -J. Jeon, J. E. Lee, O. -J. Lee and H. G. Lim, Quantification of Dysnatremia Using Single-Beam Acoustic Microbeam and Convolutional Neural Networks, IEEE Sensors Journal, vol. 24(7), pp. 9626-9638(2024).

3.

Song, HJ., Lee, S., The Predictability of a Heavy Rainfall Event during the Summer of 2022 Using an All-sky Radiance Assimilation Experiment. Asia-Pac J Atmos Sci (2024).

4.

Jeon H-J, Jeon H-J, Jeon SH, Predicting the daily number of patients for allergic diseases using PM10 concentration based on spatiotemporal graph convolutional networks. PLoS ONE 19(6): e0304106(2024).

5.

Baek S, Kim J., Subgrid-Scale Topographic Effects on Radiation for Global Weather Forecast Models, Atmosphere, vol. 15(4):479(2024).

6.

Zhang, Y., Pan, Y., Xue, Y. et al., Correction to: Near‑global summer circulation response to the spring surface temperature anomaly in Tibetan Plateau –– the GEWEX/LS4P first phase experiment, Clim Dyn (2024).

7.

An, S., Oh, TJ., Kim, SW. et al., Self-clustered GAN for precipitation nowcasting, Sci Rep 14, 9755 (2024).

8.

Kwon, Y., Jun, S., Kim,E., Seol, K.H., Hong, S., Kwon, I.H. et al. (2024)Improving weather forecast skill of the KoreanIntegrated Model by assimilating Soil MoistureActive Passive soil moisture anomalies. QuarterlyJournal of the Royal Meteorological Society, 150(765),5305–5336.

9.

Sung, Y., Jeon, HJ., Kim, D. et al. Internal pipe corrosion assessment method in water distribution system using ultrasound and convolutional neural networks. npj Clean Water 7, 63 (2024).

10.

Hyeon-Ju Jeon et al 2024 Mach. Learn.: Sci. Technol. 5 045036

11.

Jung, J., M. Chang, E. Lee, and M. Sung, 2024: Verification of Tropical Cyclogenesis Forecasts of the Korean Integrated Model for 2020–21. Wea. Forecasting, 39, 1247–1259.

12.

Kim, SY. Impact of Cloud Vertical Overlap on Cloud Radiative Effect in the Korean Integrated Model (KIM) Seasonal Simulations during Boreal Summer and Winter. Asia-Pac J Atmos Sci 60, 759–772 (2024).

13.

Gim, H.‐J., & Park, S. K. (2024). Analyticparameterization of longwave opticalproperties of bulk vegetation layerpermitting non‐zero leaf reflectivity and itsimplementation in CLM5. Journal ofAdvances in Modeling Earth Systems, 16,e2023MS003957.

SCI(E)

1.

Hoang, V.T., Jeon, H.-J., You, E.-S., Yoon, Y., Jung, S., Lee, O.-J., Graph Representation Learning and Its Applications: A Survey, Sensors 2023, 23, 4168(2023).

2.

G. W. Inverarity, W. J. Tennant, L. Anton, N. E. Bowler, A. M. Clayton, M. Jardak, A. C. Lorenc, F. Rawlins, S. A. Thompson, M. S. Thurlow, D. N. Walters, M. A. Wlasak. (2023). Met Office MOGREPS-G initialisation using an ensemble of hybrid four-dimensional ensemble variational (En-4DEnVar) data assimilations, Quarterly Journal of the Royal Meteorological Society, Volume149, Issue753, April 2023 Part B, 1138-1164.

3.

Milan, M., Clayton, A., Lorenc, A., Macpherson, B., Tubbs, R. & Dow, G. (2023) Large-scale blending in an hourly 4D-Var framework for a numerical weather prediction model. Quarterly Journal of the Royal Meteorological Society, 149(755), 2067–2090.

4.

Kang, E.-J., Sohn, B.-J., Tonboe, R.T., Noh, Y.-C., Kwon, I.-H., Kim, S.-W. et al. (2023) Explicitly determined sea ice emissivity and emission temperature over the Arctic for surface-sensitive microwave channels. Quarterly Journal of the Royal Meteorological Society, 149(754), 2011–2030.

5.

Jeon, H.-J., & Jung, J. J. (2023). Discovering the role model of authors by embedding research history. Journal of Information Science, 49(4), 990-1006.

6.

Cho, E., Kwon, Y., Kumar, S. V., and Vuyovich, C. M.: Assimilation of airborne gamma observations provides utility for snow estimation in forested environments, Hydrol. Earth Syst. Sci., 27, 4039–4056, 2023.

7.

Oh, SG., Han, JY., Min, SK. et al. Impact of urban heat island on daily and sub-daily monsoon rainfall variabilities in East Asian megacities. Clim Dyn 61, 19–32 (2023).

8.

Xue, Y., Diallo, I., Boone, A.A. et al. Remote effects of Tibetan Plateau spring land temperature on global subseasonal to seasonal precipitation prediction and comparison with effects of sea surface temperature: the GEWEX/LS4P Phase I experiment. Clim Dyn (2023).

9.

Han, JY., Kim, SW., Park, CH. et al. Ensemble size versus bias correction effects in subseasonal-to-seasonal (S2S) forecasts. Geosci. Lett. 10, 37 (2023).

10.

Madhulatha, A.; Dudhia, J.; Park, R.-S.; Bhan, S.C.; Mohapatra, M. Effect of Single and Double Moment Microphysics Schemes and Change in Cloud Condensation Nuclei, Latent Heating Rate Structure Associated with Severe Convective System over Korean Peninsula. Atmosphere 2023, 14, 1680.

11.

Lee, W.Y., Gim, HJ. & Park, S.K. Parameterizations of Snow Cover, Snow Albedo and Snow Density in Land Surface Models: A Comparative Review. Asia-Pac J Atmos Sci (2023).

Non-SCI

1.

Cho, K.-H., Lee, E.-H., & Kim, B.-M. (2023). A Study of the Blocking and Ridge over the Western North Pacific in Winter and its Impact on Cold Surge on the Korean Peninsula. Atmosphere, 33(1), 49–59.

2.

Lee, W.-J., Park, R.-S., Kwon, I.-H., & Kim, J. (2023). Numerical Weather Prediction and Forecast Application. Atmosphere, 33(2), 73–104.

3.

Park, R.-S.; Hong, S.-Y. Cloudiness Parameterization for Use in Atmospheric Models: A Review and New Perspectives. Meteorology 2023, 2, 295–306.

4.

Nam, H., & Choi, S.-J. (2023). The Improvement of Computational Efficiency in KIM by an Adaptive Time-step Algorithm. Atmosphere, 33(4), 331–341.

5.

Kim, B.-S., Koo, M.-S., & Son, S.-W. (2023). Evaluation of Accuracy and Efficiency of Double Fourier Series (DFS) Spectral Dynamical Core. Atmosphere, 33(4), 387–398.

6.

An, S., Lee, J., Jang, J., Na, I., Park, W., & You, S. (2023). Self-supervised Pre-training for Precipitation Post-processor. arXiv preprint arXiv:2310.20187.

SCI(E)

1.

Kim, J.-H.; Park, J.-R.; Kim, S.-H.; Kim, J.; Lee, E.; Baek, S.; Lee, G. A Detection of Convectively Induced Turbulence Using In Situ Aircraft and Radar Spectral Width Data. Remote Sens. 2021, 13, 726.

2.

Han, K.M.; Jung, C.H.; Park, R.-S.; Park, S.-Y.; Lee, S.; Kulmala, M.; Petäjä, T.; Karasi ´nski, G.; Sobolewski, P.; Yoon, Y.J.; et al. Data Assimilation of AOD and Estimation of Surface Particulate Matters over the Arctic. Appl. Sci. 2021, 11, 1959.

3.

Lee, E.; Kim, J.-H.; Heo, K.-Y.; Cho, Y.-K. Advection Fog over the Eastern Yellow Sea: WRF Simulation and Its Verification by Satellite and In Situ Observations. Remote Sens. 2021, 13, 1480.

4.

Kim, J.-E. E., Koo, M.-S., Yoo, C., & Hong, S.-Y. (2021). Seasonal performance of a nonhydrostatic global atmospheric model on a cubed-sphere grid. Earth and Space Science, 8, e2021EA001643.

5.

Madhulatha, A., Choi, S.-J., Han, J.-Y., & Hong, S.-Y. (2021). Impact of different nesting methods on the simulation of a severe convective event over South Korea using the Weather Research and Forecasting model. Journal of Geophysical Research: Atmospheres, 126, e2020JD033084.

6.

Xue, Y., Yao, T., Boone, A. A., Diallo, I., Liu, Y., Zeng, X., Lau, W. K. M., Sugimoto, S., Tang, Q., Pan, X., van Oevelen, P. J., Klocke, D., Koo, M.-S., Sato, T., Lin, Z., Takaya, Y., Ardilouze, C., Materia, S., Saha, S. K., Senan, R., Nakamura, T., Wang, H., Yang, J., Zhang, H., Zhao, M., Liang, X.-Z., Neelin, J. D., Vitart, F., Li, X., Zhao, P., Shi, C., Guo, W., Tang, J., Yu, M., Qian, Y., Shen, S. S. P., Zhang, Y., Yang, K., Leung, R., Qiu, Y., Peano, D., Qi, X., Zhan, Y., Brunke, M. A., Chou, S. C., Ek, M., Fan, T., Guan, H., Lin, H., Liang, S., Wei, H., Xie, S., Xu, H., Li, W., Shi, X., Nobre, P., Pan, Y., Qin, Y., Dozier, J., Ferguson, C. R., Balsamo, G., Bao, Q., Feng, J., Hong, J., Hong, S., Huang, H., Ji, D., Ji, Z., Kang, S., Lin, Y., Liu, W., Muncaster, R., de Rosnay, P., Takahashi, H. G., Wang, G., Wang, S., Wang, W., Zhou, X., and Zhu, Y.: Impact of Initialized Land Surface Temperature and Snowpack on Subseasonal to Seasonal Prediction Project, Phase I (LS4P-I): organization and experimental design, Geosci. Model Dev., 14, 4465–4494, 2021.

7.

Park, S.-B.; Han, J.-Y. Suppressing Grid-Point Storms in a Numerical Forecasting Model. Atmosphere 2021, 12, 1194.

8.

Yeh, Sang-Wook; Lee, Eun-Hye; Min, Seung-Ki; Lee, Yong-Han; Park, In-Hong; Hong, Jin-Sil. (2021). Contrasting factors on the trends in hot days and warm nights over Northern Hemisphere land during summer. Weather and Climate Extremes. 34. 100389.

9.

Choi, Suk-Jin, and Joseph B. Klemp. A New Hybrid Sigma-Pressure Vertical Coordinate with Smoothed Coordinate Surfaces. Monthly Weather Review 149.12 (2021): 4077-4089.

10.

Tang, S., Xie, S., Guo, Z., Hong, S.-Y., Khouider, B., Klocke, D., et al. (2022) Long-term single-column model intercomparison of diurnal cycle of precipitation over midlatitude and tropical land. Q J R Meteorol Soc, 641– 669.

Non-SCI

1.

Shin H, Ahn M-H, KIM J, Lee S, Lee B-I. Comparison of Wind Vectors Derived from GK2A with Aeolus/ALADIN. Korean Journal of Remote Sensing [Internet]. 2021 Dec 31;37(6_1):1631–45.

2.

Hwang Y, Ha J-H, Kim C, Choi D, Lee YH. Observing System Experiment Based on the Korean Integrated Model for Upper Air Sounding Data in the Seoul Capital Area during 2020 Intensive Observation Period. Atmosphere, vol.31, no.3(2021), pp.311–326.

3.

An, et al., "Neural network emulator optimizer: A preliminary study on korean microphysicis parameterization model.", Proceedings of the 2nd International Conference on Human-centered Artificial Intelligence (Computing4Human 2021), CEUR Workshop Proceedings, Da Nang, Vietnam, Oct 2021.

SCI

1.

Jung-Eun Esther Kim, Myung-Seo Koo, Changhyun Yoo, and Song-You Hong, 2021: Seasonal performance of a non-hydrostatic global atmospheric model on a cubed-sphere grid, Earth and Space Science, 8 (4), e2021EA001643

2.

A. Madhulatha, Suk-Jin Choi, Ji-Young Han, and Song-You Hong, 2021: Impact of different nesting methods on the simulation of a severe convective event over South Korea using the Weather Research and Forecasting Model, 126(5), Journal of Geophysical Research: Atmospheres, e2020JD033084
International Cooperation